Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers.

CANCER RESEARCH(2008)

引用 68|浏览17
暂无评分
摘要
Tumor hypoxia is important in the development and treatment of human cancers. We have developed a novel xenograft model for studying and imaging of hypoxia-induced gene expression. A hypoxia-inducible dual reporter herpes simplex virus type 1 thymidine kinase and enhanced green fluorescence protein (HSV1-TKeGFP), under the control of hypoxia response element (9HRE), was stably transfected into human colorectal HT29 cancer cells. Selected clones were further enriched by repeated live cell sorting gated for hypoxia-induced eGFP expression. Fluorescent microscopy, fluorescence-activated cell sorting, and radioactive substrate trapping assays showed strong hypoxia-induced expression of eGFP and HSV1-tk enzyme in the HT29-9HRE cells in vitro. Sequential micropositron emission tomography (PET) imaging of tumor-bearing animals, using the hypoxic cell tracer (18)F-FMISO and the reporter substrate (124)I-FIAU, yielded similar tumor hypoxia images for the HT29-9HRE xenograft but not in the parental HT29 tumor. Using autoradiography and IHC, detailed spatial distributions in tumor sections were obtained and compared for the following hypoxia-associated biomarkers in the HT29-9HRE xenograft: (124)I-FIAU, (18)F-FMISO, Hoechst (perfusion), lectin-TRITC (functional blood vessels), eGFP, pimonidazole, EF5, and CA9. Intratumoral distributions of (124)I-FIAU and (18)F-FMISO were similar, and eGFP, pimonidazole, EF5, and CA9 colocalized in the same areas but not in well-perfused regions that were positive for Hoechst and lectin-TRITC. In enabling the detection of hypoxia-induced molecular events and mapping their distribution in vivo with serial noninvasive positron emission tomography imaging, and multiple variable analysis with immunohistochemistry and fluorescence microscopy, this human xenograft model provides a valuable tool for studying tumor hypoxia and in validating existing and future exogenous markers for tumor hypoxia.
更多
查看译文
关键词
exogenous hypoxia markers,noninvasive molecular imaging,human xenografts,hypoxia-induced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要