A Comparison of Lex Bounds for Multiset Variables in Constraint Programming

AAAI(2011)

引用 2|浏览9
暂无评分
摘要
Set and multiset variables in constraint programming have typically been represented using subset bounds. However, this is a weak representation that neglects potentially useful information about a set such as its cardinality. For set variables, the length-lex (LL) representation successfully provides information about the length (cardinality) and position in the lexicographic ordering. For multiset variables, where elements can be repeated, we consider richer representations that take into account additional information. We study eight different representations in which we maintain bounds according to one of the eight different orderings: length-(co)lex (LL/LC), variety-(co)lex (VL/VC), length-variety-(co)lex (LVL/LVC), and variety-length-(co)lex (VLL/VLC) orderings. These representations integrate together information about the cardinality, variety (number of distinct elements in the multiset), and position in some total ordering. Theoretical and empirical comparisons of expressiveness and compactness of the eight representations suggest that length-variety-(co)lex (LVL/LVC) and variety-length-(co)lex (VLL/VLC) usually give tighter bounds after constraint propagation. We implement the eight representations and evaluate them against the subset bounds representation with cardinality and variety reasoning. Results demonstrate that they offer significantly better pruning and runtime.
更多
查看译文
关键词
constraint propagation,constraint programming,artificial intelligent,total order,lexicographic order
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要