A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo.

Proceedings of the National Academy of Sciences of the United States of America(2005)

引用 92|浏览5
暂无评分
摘要
All organisms contain thioredoxin (TRX), a regulatory thiol:disulfide protein that reduces disulfide bonds in target proteins. Unlike animals and yeast, plants contain numerous TRXs for which no function has been assigned in vivo. Recent in vitro proteomic approaches have opened the way to the identification of >100 TRX putative targets, but of which none of the numerous plant TRXs can be specifically associated. In contrast, in vivo methodologies, including classical yeast two-hybrid (Y2H) systems, failed to reveal the expected high number of TRX targets. Here, we developed a yeast strain named CY306 designed to identify TRX targets in vivo by a Y2H approach. CY306 contains a GAL4 reporter system but also carries deletions of endogenous genes encoding cytosolic TRXs (TRX1 and TRX2) that presumably compete with TRXs introduced as bait. We demonstrate here that, in the CY306 strain, yeast TRX1 and TRX2, as well as Arabidopsis TRX introduced as bait, interact with known TRX targets or putative partners such as yeast peroxiredoxins AHP1 and TSA1, whereas the same interactions cannot be detected in classical Y2H strains. Thanks to CY306, we also show that TRXs interact with the phosphoadenosine-5-phosphosulfate (PAPS) reductase MET16 through a conserved cysteine. Moreover, interactions visualized in CY306 are highly specific depending on the TRX and targets tested. CY306 constitutes a relevant genetic system to explore the TRX interactome in vivo and with high specificity, and opens new perspectives in the search for new TRX-interacting proteins by Y2H library screening in organisms with multiple TRXs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要