Effect of Capping Protein on a Growing Filopodium

Biophysical Journal(2010)

引用 10|浏览2
暂无评分
摘要
Filopodia, or the growth of bundles of biological fibers outwards from a biological cell surface while enclosed in a membrane tube, are implicated in many processes vital to life. This study models the effect of capping protein on such filopodia, paying close attention to the polymerization dynamics of biological fiber bundles within long membrane tubes. Due to the effects of capping protein, the number of fibers in the filopodium bundle decreases down the length of the enclosing membrane tube. This decrease in the number of fibers down the length of a growing filopodium is found to have profound implications for the dynamics and stability of filopodia in general. This study theoretically finds that the presence of even a relatively modest amount of capping protein can have a large effect on the growth of typical filopodia, such as can be found in fibroblasts, keratocytes, and neuronal growth cones. As an illustration of this modeling work, this study investigates the striking example of the acrosomal reaction in the sea cucumber Thyone, whose filopodia can grow remarkably quickly to ∼90 μm in ∼10 s, and where the number of fibers is known to decrease down the length of the filopodium, presumably due to progressive fiber end-capping occurring as the filopodium grows. Realistic future dynamical theories for filopodium growth are likely to rely on an accurate treatment of the kinds of capping protein effects analyzed in this work.
更多
查看译文
关键词
growth cone,kinetics,actins,pseudopodia,biophysics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要