Apocynin administration does not improve behavioral and neuropathological deficits in a transgenic mouse model of Alzheimer's disease.

Neuroscience Letters(2011)

引用 19|浏览16
暂无评分
摘要
In addition to mitochondria, NADPH oxidase (NOX) is a source of oxidative stress, which can induce oxidative damage in Alzheimer's disease (AD). For this reason, several groups have investigated the effect of its inhibition. In AD mice, NADPH oxidase 2 (NOX2) deficiency improved behavior and cerebrovascular function, and reduced oxidative stress. In our study, we administered the NOX inhibitor apocynin to Tg19959 mice, and found that it did not improve cognitive and synaptic deficits, and did not decrease amyloid deposition, microgliosis and hyperphosphorylated tau. However, apocynin reduced carbonyl levels in the cerebral cortex but not the hippocampus, which may have not been sufficient to ameliorate symptoms. Also, the reduction of NOX-mediated oxidative stress may not be sufficient to prevent AD, since other sources of reactive oxygen species such as mitochondria may be more important.
更多
查看译文
关键词
Alzheimer's disease,Apocynin,NADPH oxidase,Amyloid plaques,Oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要