GABAB/NMDA receptor interaction in the regulation of extracellular dopamine levels in rodent prefrontal cortex and striatum.

Neuropharmacology(2009)

引用 57|浏览21
暂无评分
摘要
Deficits in N-methyl-d-aspartate receptor (NMDAR)-mediated neurotransmission may underlie dopaminergic hyperactivity in schizophrenia. Dysregulation of the GABAergic system has also been implicated. In this study we investigated a role for GABAB receptors as an intermediate step in the pathway leading from NMDAR stimulation to DA regulation. Since glycine (GLY) has been found to ameliorate treatment resistant negative symptoms in schizophrenia, we treated a group of rats with 16% GLY food for 2 weeks. DA levels in prefrontal cortex (PFC) and striatum (STR) were assessed by dual-probe microdialysis and HPLC–EC in freely moving rats. Infusion of the GABAB receptor agonists SKF97541 and baclofen into PFC and STR significantly reduced basal DA, an effect that was reversed by the antagonist, CGP52432. In PFC, GABAB agonists also reduced AMPH-induced DA release following treatment with either 1 or 5 mg/kg AMPH. Similar effects were seen following subchronic glycine treatment in the absence, but not presence of CGP52432 during 5 mg/kg AMPH treatment. In STR SKF97541 decreased only the 1 mg/kg AMPH-induced DA release. Subchronic GLY treatment in STR leads to a significant reduction in basal DA levels, but did not affect AMPH (5 mg/kg)-induced release. Our findings support a model in which NMDA/glycine-site agonists modulate DA release in part through presynaptic GABAB receptors on DA terminals, with both GABAB ligands and GLY significantly modulating AMPH-induced DA release. Both sites, therefore, may represent appropriate targets for drug development in schizophrenia and substance abuse disorders.
更多
查看译文
关键词
NMDA receptors,Glycine,Amphetamine,GABAB receptors,Dopamine,Schizophrenia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要