Mutation of the Active Site Carboxy-Lysine (K70) of OXA-1 β-Lactamase Results in a Deacylation-Deficient Enzyme

BIOCHEMISTRY(2009)

引用 47|浏览10
暂无评分
摘要
Class D beta-lactamases hydrolyze beta-lactam antibiotics by using an active site serine nucleophile to form a covalent acyl-enzyme intermediate and subsequently employ water to deacylate the beta-lactam and release product. Class D beta-lactamases are carboxylated on the E-amino group of an active site lysine, with the resulting carbamate functional group serving as a general base. We discovered that substitutions of the active site serine and lysine in OXA-1 beta-lactamase, a monomeric class D enzyme, significantly disrupt catalytic turnover. Substitution of glycine for the nucleophilic serine (S67G) results in an enzyme that can still bind substrate but is unable to form a covalent acyl-enzyme intermediate. Substitution of the carboxylated lysine (K70), on the other hand, results in enzyme that can be acylated by substrate but is impaired with respect to deacylation. We employed the fluorescent penicillin BOCILLIN FL to show that three different substitutions for K70 (alanine, aspartate, and glutamate) lead to the accumulation of significant acyl-enzyme intermediate. Interestingly, BOCILLIN FL deacylation rates (t(1/2)) vary depending on the identity of the substituting residue, from approximate to 60 min for K70A to undetectable deacylation for K70D. Tryptophan fluorescence spectroscopy was used to confirm that these results are applicable to natural (i.e., nonfluorescent) substrates. Deacylation by K70A, but not K70D or K70E, can be partially restored by the addition of short-chain carboxylic acid mimetics of the lysine carbamate. In conclusion, we establish the functional role of the carboxylated lysine in OXA-1 and highlight its specific role in acylation. and deacylation.
更多
查看译文
关键词
enzyme,active site
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要