A Semi-Automatic Method for Image Analysis of Edge Dynamics in Living Cells

Cellular and Molecular Bioengineering(2010)

引用 5|浏览4
暂无评分
摘要
Spatial asymmetry of actin edge ruffling contributes to the process of cell polarization and directional migration, but mechanisms by which external cues control actin polymerization near cell edges remain unclear. We designed a quantitative image analysis strategy to measure the spatiotemporal distribution of actin edge ruffling. Time-lapse images of endothelial cells (ECs) expressing mRFP-actin were segmented using an active contour method. In intensity line profiles oriented normal to the cell edge, peak detection identified the angular distribution of polymerized actin within 1 μ m of the cell edge, which was localized to lamellipodia and edge ruffles. Edge features associated with filopodia and peripheral stress fibers were removed. Circular statistical analysis enabled detection of cell polarity, indicated by a unimodal distribution of edge ruffles. To demonstrate the approach, we detected a rapid, nondirectional increase in edge ruffling in serum-stimulated ECs and a change in constitutive ruffling orientation in quiescent, nonpolarized ECs. Error analysis using simulated test images demonstrate robustness of the method to variations in image noise levels, edge ruffle arc length, and edge intensity gradient. These quantitative measurements of edge ruffling dynamics enable investigation at the cellular length scale of the underlying molecular mechanisms regulating actin assembly and cell polarization.
更多
查看译文
关键词
Actin ruffles,Planar cell polarity,Mechanotransduction,Endothelial cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要