Photooxidation of Amine-Terminated Self-Assembled Monolayers on Gold

JOURNAL OF PHYSICAL CHEMISTRY C(2010)

引用 36|浏览14
暂无评分
摘要
Amine-terminated self-assembled monolayers (SAMs) on Au surfaces are commonly used to immobilize various types of molecules, including DNA and proteins. However, little is known about the stability of these types of surfaces. In this work, it was observed that the surface potential (as well as the isoelectric point) of amine-bearing SAMs on flat gold substrates changed significantly with time, indicating that the surface functional group is not stable under ambient conditions (standard temperature and pressure). Contact angle analysis indicated that after degradation, the polar component of the interfacial force decreased and the dispersion component increased. These results indicate that the surface has undergone a chemical transformation. X-ray photoelectron spectroscopy (XPS) was used to detect changes in the chemical state of the surface nitrogen atoms. The chemical shift of the binding energy indicates that the nitrogen is partially oxidized. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS), the oxidation of the amino groups to nitroso groups was evident, as was the previously reported oxidation of the thiol groups to sulfonate groups. Two methods for retarding the oxidation of the amine functional group are presented in this work. By isolating the SAM from either light or air, the oxidation is suppressed and the surface properties are preserved. In other words, the shelf life of the amine-modified gold substrates is prolonged. This result suggests that the oxidation is either photocatalyzed or photoinduced.
更多
查看译文
关键词
self assembled monolayer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要