Manipulation of tRNA properties by structure-based and combinatorial in vitro approaches.

PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY(2001)

引用 0|浏览1
暂无评分
摘要
The wide knowledge accumulated over the years on the structure and function of transfer RNAs (tRNAs) has allowed molecular biologists to decipher the rules underlying the function and the architecture of these molecules. These rules will be discussed and the implications for manipulating tRNA properties by structure-based and combinatorial in vitro approaches reviewed. Since most of the signals conferring function to tRNAs are located on the two distal extremities of their three-dimensional L shape, this implies that the structure of the RNA domain connecting these two extremities can be of different architecture and/or can be modified without disturbing individual functions. This concept is first supported by the existence in nature of RNAs of peculiar structures having tRNA properties, as well as by engineering experiments on natural tRNAs. The concept is further illustrated by examples of RNAs designed by combinatorial methods. The different procedures used to select RNAs or tRNA-mimics interacting with aminoacyl-tRNA synthetases or with elongation factors and to select tRNA-mimics aminoacylated by synthetases are presented, as well as the functional and structural characteristics of the selected molecules. Production and characteristics of aptameric RNAs fulfilling aminoacyl-tRNA synthetase functions and of RNAs selected to have affinities for amino acids are also described. Finally, properties of RNAs obtained by either the structure-based or the combinatorial methods are discussed in the light of the origin and evolution of the translation machinery, but also with a view to obtain new inhibitors targeting specific steps in translation.
更多
查看译文
关键词
amino acid,three dimensional
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要