Homeodomain-interacting protein kinase 2 (HIPK2) targets β-catenin for phosphorylation and proteasomal degradation

Biochemical and Biophysical Research Communications(2010)

引用 34|浏览10
暂无评分
摘要
The regulation of intracellular β-catenin levels is central in the Wnt/β-catenin signaling cascade and the activation of the Wnt target genes. Here, we show that homeodomain-interacting protein kinase 2 (HIPK2) acts as a negative regulator of the Wnt/β-catenin pathway. Knock-down of endogenous HIPK2 increases the stability of β-catenin and results in the accumulation of β-catenin in the nucleus, consequently enhancing the expression of Wnt target genes and cell proliferation both in vivo and in cultured cells. HIPK2 inhibits TCF/LEF-mediated target gene activation via degradation of β-catenin. HIPK2 phosphorylates β-catenin at its Ser33 and Ser37 residues without the aid of a priming kinase. Substitutions of Ser33 and Ser37 for alanines abolished the degradation of β-catenin associated with HIPK2. In ex vivo mouse model, HIPK2 knock-down resulted in accumulation of β-catenin, thereby potentiated β-catenin-mediated cell proliferation and tumor formation. Furthermore, the axis duplication induced by the ectopic expression of β-catenin was blocked by co-injection of HIPK2 mRNAs into Xenopus embryos. Taken together, HIPK2 appears to function as a novel negative regulator of β-catenin through its phosphorylation and proteasomal degradation.
更多
查看译文
关键词
HIPK2,β-Catenin phosphorylation,Proteasomal degradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要