Retinoic acid stimulates 17beta-estradiol and testosterone synthesis in rat hippocampal slice cultures.

ENDOCRINOLOGY(2009)

引用 64|浏览6
暂无评分
摘要
The hippocampus is essentially involved in learning and memory processes. Its functions are affected by various neuromodulators, including 17beta-estradiol, testosterone, and retinoid. Brain-synthesized steroid hormones act as autocrine and paracrine modulators. The regulatory mechanism underlying brain steroidogenesis has not been fully elucidated. Synthesis of sex steroids in the gonads is stimulated by retinoic acids. Therefore, we examined the effects of retinoic acids on estradiol and testosterone biosynthesis in the rat hippocampus. We used cultured hippocampal slices from 10- to 12-d-old male rats to investigate de novo steroidogenesis. The infant rat hippocampus possesses mRNAs for steroidogenic enzymes and retinoid receptors. Slices were used after 24 h of preculture to obtain maximal steroidogenic activity because steroidogenesis in cultured slices decreases with time. The mRNA levels for P450(17alpha), P450 aromatase and estrogen receptor-beta in the slices were increased by treatment with 9-cis-retinoic acid but not by all-trans-isomer. The magnitude of stimulation and the shape of the dose-response curve for the mRNA level for P450(17alpha) were similar to those for cellular retinoid binding protein type 2, the transcription of which is activated by retinoid X receptor signaling. 9-cis-Retinoic acid also induced a 1.7-fold increase in the protein content of P450(17alpha) and a 2-fold increase in de novo synthesis of 17beta-estradiol and testosterone. These steroids may be synthesized from a steroid precursor(s), such as pregnenolone or other steroids, or from cholesterol, as so-called neurosteroids. The stimulation of estradiol and testosterone synthesis by 9-cis-retinoic acid might be caused by activation of P450(17alpha) transcription via retinoid X receptor signaling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要