Identification of a decidua-specific enhancer on the human prolactin gene with two critical activator protein 1 (AP-1) binding sites.

MOLECULAR ENDOCRINOLOGY(2013)

引用 27|浏览18
暂无评分
摘要
Deletion analysis of the human PRL promoter in endometrial stromal cells decidualized in vitro revealed a 536-bp enhancer located between nucleotide (nt) -2,040 to -1,505 in the 5'-flanking region. The 536-bp enhancer fragment ligated into a thymidine kinase (TK) promoter-luciferase reporter plasmid conferred enhancer activity in decidual-type cells but not nondecidual cells. DNase I footprint analysis of decidualized endometrial stromal cells revealed three protected regions, FP1-FP3. Transfection of overlapping 100-bp fragments of the 536-bp enhancer indicated that FP1 and FP3 each conferred enhancer activity. Gel shift assays indicated that both FP1 and FP3 bind activator protein 1 (AP-1), and JunD and Fra-2 are components of the AP-1 complex in decidual fibroblasts. Mutation of the AP-1 binding site in either FP1 or FP3 decreased enhancer activity by approximately 50%, while mutation of both sites almost completely abolished activity. Coexpression of the 536-bp enhancer and A-fos, a dominant negative to AP-1, decreased enhancer activity by approximately 70%. Conversely, coexpression of Fra-2 in combination with JunD or c-Jun and p300 increased enhancer activity 6- to 10-fold. Introduction of JunD and Fra-2 into nondecidual cells is sufficient to confer enhancer activity. JunD and Fra-2 protein expression was markedly increased in secretory phase endometrium and decidua of early pregnancy (high PRL content) compared with proliferative phase endometrium (no PRL). These investigations indicate that the 5'-flanking region of the human PRL gene contains a decidua-specific enhancer between nt -2,040/-1,505 and AP-1 binding sites within this enhancer region are critical for activity.
更多
查看译文
关键词
binding sites within this enhancer region are criti- cal for activity. molecular endocrinology 15: 638- 653,2001,protein expression,binding site
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要