Pals-associated tight junction protein functionally links dopamine and angiotensin II to the regulation of sodium transport in renal epithelial cells.

BRITISH JOURNAL OF PHARMACOLOGY(2009)

引用 16|浏览3
暂无评分
摘要
Background and purpose: Dopamine inhibits renal cell Na+,K+-ATPase activity and cell sodium transport by promoting the internalization of active molecules from the plasma membrane, whereas angiotensin II (ATII) stimulates its activity by recruiting new molecules to the plasma membrane. They achieve such effects by activating multiple and distinct signalling molecules in a hierarchical manner. The purpose of this study was to investigate whether dopamine and ATII utilize scaffold organizer proteins as components of their signalling networks, in order to avoid deleterious cross talk. Experimental approach: Attention was focused on a multiple PDZ domain protein, Pals-associated tight junction protein (PATJ). Ectopic expression of PATJ in renal epithelial cells in culture was used to study its interaction with components of the dopamine signalling cascade. Similarly, expression of PATJ deletion mutants was employed to analyse its functional relevance during dopamine-, ATII- and insulin-dependent regulation of Na+,K+-ATPase. Key results: Dopamine receptors and components of its signalling cascade mediating inhibition of Na+,K+-ATPase interact with PATJ. Inhibition of Na+,K+-ATPase by dopamine was prevented by expression of mutants of PATJ lacking PDZ domains 2, 4 or 5; whereas the stimulatory effect of ATII and insulin on Na+,K+-ATPase was blocked by expression of PATJ lacking PDZ domains 1, 4 or 5. Conclusions and implications: A multiple PDZ domain protein may add functionality to G protein-coupled and tyrosine kinase receptors signalling during regulation of Na+,K+-ATPase. Signalling molecules and effectors can be integrated into a functional network by the scaffold organizer protein PATJ via its multiple PDZ domains.
更多
查看译文
关键词
Na+,K+-ATPase,insulin receptors,PDZ domains,endocytosis,renal epithelial cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要