Ca2+ regulation of rabbit skeletal muscle thin filament sliding: role of cross-bridge number.

Biophysical journal(2003)

引用 39|浏览4
暂无评分
摘要
We investigated how strong cross-bridge number affects sliding speed of regulated Ca(2+)-activated, thin filaments. First, using in vitro motility assays, sliding speed decreased nonlinearly with reduced density of heavy meromyosin (HMM) for regulated (and unregulated) F-actin at maximal Ca(2+). Second, we varied the number of Ca(2+)-activatable troponin complexes at maximal Ca(2+) using mixtures of recombinant rabbit skeletal troponin (WT sTn) and sTn containing sTnC(D27A,D63A), a mutant deficient in Ca(2+) binding at both N-terminal, low affinity Ca(2+)-binding sites (xxsTnC-sTn). Sliding speed decreased nonlinearly as the proportion of WT sTn decreased. Speed of regulated thin filaments varied with pCa when filaments contained WT sTn but filaments containing only xxsTnC-sTn did not move. pCa(50) decreased by 0.12-0.18 when either heavy meromyosin density was reduced to approximately 60% or the fraction of Ca(2+)-activatable regulatory units was reduced to approximately 33%. Third, we exchanged mixtures of sTnC and xxsTnC into single, permeabilized fibers from rabbit psoas. As the proportion of xxsTnC increased, unloaded shortening velocity decreased nonlinearly at maximal Ca(2+). These data are consistent with unloaded filament sliding speed being limited by the number of cycling cross-bridges so that maximal speed is attained with a critical, low level of actomyosin interactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要