Shaker IR and Kv1.5 mutant channels with enhanced slow inactivation also exhibit K + o -dependent resting inactivation

Pflügers Archiv - European Journal of Physiology(2013)

引用 1|浏览7
暂无评分
摘要
Previous studies have shown that in N-type inactivation-removed Shaker ( Shaker IR) channels, the T449K and T449A mutations result in enhanced slow inactivation. These mutant channels also show a loss of conductance in 0 mM K + o that was attributed to an inactivation process occurring from the closed, resting state and which we refer to as resting inactivation. Similar behavior has also been observed in the Kv1.5 H463G mutant channel. To date, the time courses for the onset of and recovery from resting inactivation have been unknown, but a comparison of the kinetics for resting inactivation induced at −80 mV and slow inactivation evoked at +50 mV may provide information on whether these two processes are mechanistically related. Here, we present an analysis of the time courses for the onset of and recovery from [K + ] o -dependent resting inactivation and depolarization-induced inactivation of these mutant channels. Despite the enhancement of slow inactivation in the Shaker IR T449K, T449A, and Kv1.5 H463G mutants, the time constant for slow inactivation at +50 mV ( τ inact ) was relatively insensitive to the increases or decreases of [K + ] o , confirming that accelerated inactivation from the open state does not underlie the loss of conductance in 0 mM K + . For all three mutants, the time constant for resting inactivation ( τ RI ), induced by exposure to 0 mM K + o solution at −80 mV, was at least an order of magnitude larger than τ inact . On the other hand, the time course of recovery at −80 mV of each mutant from 0 mM K + o -induced resting inactivation was the same as that from depolarization-induced slow inactivation. This latter result suggests that the 0 mM K + o -induced resting inactivation of these mutant Shaker IR and Kv1.5 channels is mechanistically related to slow inactivation.
更多
查看译文
关键词
Slow inactivation,Resting inactivation,Kv1.5,ShakerIR,[K+]o,Potassium channel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要