Clonidine transport at the mouse blood|[ndash]|brain barrier by a new H|[plus]| antiporter that interacts with addictive drugs

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM(2009)

引用 61|浏览6
暂无评分
摘要
Identifying drug transporters and their in vivo significance will help to explain why some central nervous system (CNS) drugs cross the blood–brain barrier (BBB) and reach the brain parenchyma. We characterized the transport of the drug clonidine at the luminal BBB by in situ mouse brain perfusion. Clonidine influx was saturable, followed by Michaelis–Menten kinetics (Km=0.62 mmol/L, Vmax=1.76 nmol/sec per g at pH 7.40), and was insensitive to both sodium and trans-membrane potential. In vivo manipulation of intracellular and/or extracellular pH and trans-stimulation showed that clonidine was transported by an H+-coupled antiporter regulated by both proton and clonidine gradients, and that diphenhydramine was also a substrate. Organic cation transporters (Oct1–3), P-gp, and Bcrp did not alter clonidine transport at the BBB in knockout mice. Secondary or tertiary amine CNS compounds such as oxycodone, morphine, diacetylmorphine, methylenedioxyamphetamine (MDMA), cocaine, and nicotine inhibited clonidine transport. However, cationic compounds that interact with choline, Mate, Octn, and Pmat transporters did not. This suggests that clonidine is transported at the luminal mouse BBB by a new H+-coupled reversible antiporter.
更多
查看译文
关键词
neurovascular, brain, neurology, neuroscience, blood, brain circulation, brain metabolism, cerebrovascular, JCBFM, nature journals, nature publishing group, ISCBFM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要