New t-Gap Insertion-Deletion-Like Metrics for DNA Hybridization Thermodynamic Modeling.

JOURNAL OF COMPUTATIONAL BIOLOGY(2006)

引用 6|浏览4
暂无评分
摘要
We discuss the concept of t-gap block isomorphic subsequences and use it to describe new abstract string metrics that are similar to the Levenshtein insertion-deletion metric. Some of the metrics that we define can be used to model a thermodynamic distance function on single-stranded DNA sequences. Our model captures a key aspect of the nearest neighbor thermodynamic model for hybridized DNA duplexes. One version of our metric gives the maximum number of stacked pairs of hydrogen bonded nucleotide base pairs that can be present in any secondary structure in a hybridized DNA duplex without pseudoknots. Thermodynamic distance functions are important components in the construction of DNA codes, and DNA codes are important components in biomolecular computing, nanotechnology, and other biotechnical applications that employ DNA hybridization assays. We show how our new distances can be calculated by using a dynamic programming method, and we derive a Varshamov-Gilbert-like lower bound on the size of some of codes using these distance functions as constraints. We also discuss software implementation of our DNA code design methods.
更多
查看译文
关键词
insertion-deletion,common subsequence,DNA hybridization,DNA code,nearest neighbor thermodynamics,stacked pairs,weighted sequences,t-gap block isomorphic subsequences
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要