Multiprospector: An Algorithm For The Prediction Of Protein-Protein Interactions By Multimeric Threading

Proteins(2002)

引用 248|浏览9
暂无评分
摘要
In this postgenomic era, the ability to identify protein-protein interactions on a genomic scale is very important to assist in the assignment of physiological function. Because of the increasing number of solved structures involving protein complexes, the time is ripe to extend threading to the prediction of quaternary structure. In this spirit, a multimeric threading approach has been developed. The approach is comprised of two phases. In the first phase, traditional threading on a single chain is applied to generate a set of potential structures for the query sequences. In particular, we use our recently developed threading algorithm, PROSPECTOR. Then, for those proteins whose template structures are part of a known complex, we re-thread on both partners in the complex and now include a protein-protein interfacial energy. To perform this analysis, a database of multimeric protein structures has been constructed, the necessary interfacial pairwise potentials have been derived, and a set of empirical indicators to identify true multimers based on the threading Z-score and the magnitude of the interfacial energy have been established. The algorithm has been tested on a benchmark set comprised of 40 homodimers, 15 heterodimers, and 69 monomers that were scanned against a protein library of 2478 structures that comprise a representative set of structures in the Protein Data Bank. Of these, the method correctly recognized and assigned 36 homodimers, 15 heterodimers, and 65 monomers. This protocol was applied to identify partners and assign quaternary structures of proteins found in the yeast database of interacting proteins. Our multimeric threading algorithm correctly predicts 144 interacting proteins, compared to the 56 (26) cases assigned by PSI-BLAST using a (less) permissive E-value of 1 (0.01). Next, all possible pairs of yeast proteins have been examined. Predictions (n = 2865) of protein-protein interactions are made; 1138 of these 2865 interactions have counterparts in the Database of Interacting Proteins. In contrast, PSI-BLAST made 1781 predictions, and 1215 have counterparts in DIP. An estimation of the false-negative rate for yeast-predicted interactions has also been provided. Thus, a promising approach to help assist in the assignment of protein-protein interactions on a genomic scale has been developed. (C) 2002 Wiley-Liss, Inc.
更多
查看译文
关键词
protein-protein interactions,threading,interfacial potentials,protein dimers,genomic scale predictions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要