New Human Myelodysplastic Cell Line, Ter-3: G-Csf Specific Downregulation Of Ca2+/Calmodulin-Dependent Protein Kinase Iv

JOURNAL OF CELLULAR PHYSIOLOGY(2002)

引用 3|浏览6
暂无评分
摘要
We have established a new hematopoietic cell line from a patient with myelodysplastic syndrome (MDS), which was refractory anemia with excess blasts (RAEB). This cell line, designated TER-3, depends on several cytokines for long-term survival and growth, and requires interleukin-3 (IL-3) for continuous growth. Cytochemical analysis revealed that TER-3 cells are weakly dianisidine positive and nonspecific esterase positive, but peroxidase negative. The surface marker profile shows that the TER-3 cells are strongly positive for myeloid, lymphoid, and megakaryocytic antigens such as CD15, CD19, and CD61, and negative for some common multilineage antigens such as CD13, CD33, and CD34. Thus, this cell line has a multilineage phenotype, suggesting that the transformation event occurred in multipotent stem cells. Dianisidine- and nonspecific esterase-positive TER-3 cells increase with granulocyte-colony stimulating factor (G-CSF) rather than with IL-3. These results suggest that the cell line is useful for understanding the mechanism underlying G-CSF-associated hematopoietic cell differentiation and activation in the patient with MDS. (C) 2002 Wiley-Liss, Inc.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要