The Ca2+-sensing receptor couples to Galpha12/13 to activate phospholipase D in Madin-Darby canine kidney cells.

American journal of physiology. Cell physiology(2003)

引用 24|浏览5
暂无评分
摘要
The Ca2+-sensing receptor (CaR) couples to multiple G proteins involved in distinct signaling pathways: Galphai to inhibit the activity of adenylyl cyclase and activate ERK, Galphaq to stimulate phospholipase C and phospholipase A2, and Gbetagamma to stimulate phosphatidylinositol 3-kinase. To determine whether the receptor also couples to Galpha12/13, we investigated the signaling pathway by which the CaR regulates phospholipase D (PLD), a known Galpha12/13 target. We established Madin-Darby canine kidney (MDCK) cell lines that stably overexpress the wild-type CaR (CaRWT) or the nonfunctional mutant CaRR796W as a negative control, prelabeled these cells with [3H]palmitic acid, and measured CaR-stimulated PLD activity as the formation of [3H]phosphatidylethanol (PEt). The formation of [3H]PEt increased in a time-dependent manner in the cells that overexpress the CaRWT but not the CaRR796W. Treatment of the cells with C3 exoenzyme inhibited PLD activity, which indicates that the CaR activates the Rho family of small G proteins, targets of Galpha12/13. To determine which G protein(s) the CaR couples to in order to activate Rho and PLD, we pretreated the cells with pertussis toxin to inactivate Galphai or coexpressed regulators of G protein-signaling (RGS) proteins to attenuate G protein signaling (RGS4 for Galphai and Galphaq, and a p115RhoGEF construct containing the RGS domain for Galpha12/13). Overexpression of p115RhoGEF-RGS in the MDCK cells that overexpress CaRWT inhibited extracellular Ca2+-stimulated PLD activity, but pretreatment of cells with pertussis toxin and overexpression of RGS4 were without effect. The involvement of other signaling components such as protein kinase C, ADP-ribosylation factor, and phosphatidylinositol biphosphate was excluded. These findings demonstrate that the CaR couples to Galpha12/13 to regulate PLD via a Rho-dependent mechanism and does so independently of Galphai and Galphaq. This suggests that the CaR may regulate cytoskeleton via Galpha12/13, Rho, and PLD.
更多
查看译文
关键词
calcium-sensing receptor, G proteins, RGS proteins
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要