Peroxisome Proliferator-Activated Receptor Alpha Induces Nadph Oxidase Activity In Macrophages, Leading To The Generation Of Ldl With Ppar-Alpha Activation Properties

CIRCULATION RESEARCH(2004)

引用 113|浏览18
暂无评分
摘要
Peroxisome proliferator - activated receptors (PPARs) are nuclear receptors controlling lipid and glucose metabolism as well as inflammation. PPARs are expressed in macrophages, cells that also generate reactive oxygen species (ROS). In this study, we investigated whether PPARs regulate ROS production in macrophages. Different PPAR-alpha, but not PPAR-gamma agonists, increased the production of ROS (H2O2 and O-2(radical anion)) in human and murine macrophages. PPAR-alpha activation did not induce cellular toxicity, but significantly decreased intracellular glutathione levels. The increase in ROS production was not attributable to inherent prooxidant effects of the PPAR-alpha agonists tested, but was mediated by PPAR-alpha, because the effects were lost in bone marrow - derived macrophages from PPAR-alpha(-/-) mice. The PPAR-alpha-induced increase in ROS was attributable to the induction of NADPH oxidase, because ( 1) preincubation with the NADPH oxidase inhibitor diphenyleneiodinium prevented the increase in ROS production; ( 2) PPAR-alpha agonists increased O-2(radical anion) production measured by superoxide dismutase - inhibitable cytochrome c reduction; ( 3) PPAR-alpha agonists induced mRNA levels of the NADPH oxidase subunits p47(phox), p67(phox), and gp91(phox) and membrane p47(phox) protein levels; and (4) induction of ROS production was abolished in p47(phox-/-) and gp91(phox-/-) macrophages. Finally, induction of NADPH oxidase by PPAR-alpha agonists resulted in the formation of oxidized LDL metabolites that exert PPAR-alpha-independent proinflammatory and PPAR-alpha - dependent decrease of lipopolysaccharide-induced inducible nitric oxide synthase expression in macrophages. These data identify a novel mechanism of autogeneration of endogenous PPAR-alpha ligands via stimulation of NADPH oxidase activity.
更多
查看译文
关键词
macrophages, nuclear receptors, NADPH oxidase, reactive oxygen species, inflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要