Lithium stabilizes square-two-dimensional metal sheets: a computational exploration

NANOSCALE(2022)

引用 0|浏览2
暂无评分
摘要
Based on the M-4-square-containing M4Li2 (M = Al, Ga, In, Tl, Ge, Sn, Pb, Sb, Bi, Cu, Ag, Au, and Hg) clusters, we computationally designed two-dimensional (2D) M2Li sheets consisting of M-4-square motifs. The four M2Li-I (M = Sb, Bi, Ag, and Au) monolayers with Li square sublayer sandwiched between two M square sublayers (P4/mmm space group) were confirmed to be stable (high cohesive energies, positive vibrational frequencies, moderate Young's moduli, and structural integrity during first-principles molecular dynamics simulations at 500 K), and the particle swarm optimization (PSO) method identified these constructed monolayers as the global minima in the 2D space. The three M2Li-I (M = Sb, Bi, and Ag) monolayers demonstrated a half-auxetic behavior. Ag2Li-I could well activate CO2 and convert it into HCOOH by following the path * -> *CO2 -> *OCHO -> *HCOOH -> *+HCOOH. Particularly, Ag2Li-I shows great promise as an electrocatalyst for CO2 reduction as its limiting potential is as low as 0.40 (0.27) V without (with) considering the solvent effect. Our theoretical explorations reveal that lithium can stabilize the square metal monolayers, and the stable square binary metal sheets exhibit diverse mechanical and electrochemical properties, which can be used in the fields of mechanics and electrochemical catalysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要