Anandamide centrally depresses the respiratory rhythm generator of neonatal mice.

Neuroscience(2010)

引用 8|浏览4
暂无评分
摘要
Endogenous cannabinoid receptors are widely distributed throughout the CNS, including the brainstem, and modulate a variety of functions, including breathing. In adult rats, activation of cannabinoid 1 receptors has been shown to depress breathing. Here in neonatal mice, we used in vitro electrophysiology, pharmacology, and immunohistochemistry to analyse the central effects of the endocannabinoid anandamide (AEA) on the activity of the medullary respiratory rhythm generator (RRG). First of all, in vitro electrophysiology on medullary preparations has revealed that bath application of AEA (30 μM, 15 min) significantly depressed respiratory activity. Secondly, applying pre-treatments with alpha-1 (Prazosin, 5 μM, 10 min) and alpha-2 (Yohimbine, 5 μM, 10 min) adrenoceptor antagonists prior to AEA application abolished the AEA-induced depression of the RRG. Finally, immunostaining revealed a dense network of fibres positive for the cannabinoid 1 receptor in the ventrolateral medulla (VLM), a region known to contain both the RRG and the modulatory A1/C1 catecholaminergic group. Moreover, cannabinoid 1 receptor positive fibres were found in close apposition with A1/C1 catecholaminergic cells, identified by the presence of tyrosine hydroxylase. In regard of our electrophysiological, pharmacological and immunostaining results, we conclude that AEA has a central depressive effect on the neonatal RRG, probably via the medullary A1/C1 catecholaminergic neurons which are already known to modulate the respiratory rhythm generator.
更多
查看译文
关键词
endocannabinoid,neonate,catecholamine,respiratory rhythm generator,in vitro
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要