Developmentally induced microencephalopathy in guinea pigs--embryonic glial cell activation marks selective neuronal death.

International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience(2001)

引用 2|浏览2
暂无评分
摘要
We have recently shown that in utero treatment of guinea pigs with the DNA methylating substance methylazoxymethanol acetate (MAM) on gestation day (GD) 24 results in neocortical microencephalopathy, increased protein kinase C activity and altered processing of the amyloid precursor protein in neocortex of the offsprings. In order to identify the primary neuronal lesions produced by MAM-treatment, we mapped the 5-bromo-2'-deoxyuridine (BrdU)-incorporation in dividing neurons on GD 24 and we followed the effects of MAM-treatment on GD 24 on embryonic immediate early gene expression and on glial cell activation. BrdU injected on GD 24 labeled many neurons of the ventricular zone and of the intermediate zone but only scattered neurons of the cortical plate. When time-mated guinea pigs were injected intraperitoneally with MAM on GD 24, we observed the activation of microglial cells in the ventricular/intermediate zone and the appearence of astrocytes between the intermediate zone and the cortical plate, 48 h after intoxification. The activation of glial cells was accompanied by the neuronal expression of c-Fos but not of c-Jun in the ventricular/intermediate zone. Based on our observations on BrdU-incorporation and on the morphological outcome of MAM treatment in the juvenile guinea pig, our data presented here indicate that selective neurodegeneration during development induces the activation of both phagocytotic microglial cells and of astrocytes which might trophically support damaged neurons surviving this lesion procedure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要