Mutational Analysis Of Mononucleotide Repeats In Dual Specificity Tyrosine Phosphatase Genes In Gastric And Colon Carcinomas With Microsatellite Instability (Vol 93, 118, 2010)

APMIS(2021)

引用 21|浏览4
暂无评分
摘要
Coordinated protein phosphorylation and dephosphorylation are crucial in the regulation of cell signaling, and disruption of the coordination is known to play important roles in cancer development. Recent reports revealed that classical protein tyrosine phosphatase (PTP)-encoded genes are somatically mutated in human colorectal cancer. However, data on dual specificity phosphatase (DPTP) gene mutations in human cancers are lacking. By analyzing a public genomic database, we found that five DPTP genes, CDC14A, MTM1, MTMR3, SSH1, and SSH2, have mononucleotide repeats in their coding DNA sequences. To see whether these genes are mutated in cancers with microsatellite instability (MSI), we analyzed the mononucleotide repeats in 26 gastric cancers (GC) with MSI (MSI-H), 12 GC with low MSI (MSI-L), 45 GC with stable MSI (MSS), 33 colorectal cancers (CRC) with MSI-H, 14 CRC with MSI-L, and 45 CRC with MSS by single-strand conformation polymorphism (SSCP). We found CDC14A and MTMR3 mutations in five and one cancer (s), respectively. These mutations were detected in MSI-H cancers, but not in MSI-L or MSS cancers. The GC and CRC with MSI-H harbored the mutations in 15% and 6%, respectively. The CDC14A and MTMR3 mutations detected in the GC and CRC were deletion or duplication mutations of one base in the nucleotide repeats that would result in premature stops of the amino acid syntheses. Our data show that frameshift mutations of DPTP genes in MSI-H cancers occur at moderate frequencies. The data suggested that alterations in the CDC14A and MTMR3 genes may play a role in the development of GC and CRC with MSI-H by deregulating phosphatase functions possibly together with mutations of classical PTP genes.
更多
查看译文
关键词
MSI,mutation,cancer,dual specificity phosphatase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要