Acetylcholinesterase biogenesis is impaired in lung cancer tissues.

Chemico-Biological Interactions(2005)

引用 9|浏览12
暂无评分
摘要
Studies cited by Cowan et al. [J. Appl. Toxicol. 23, 177 (2003)] indicate existence of inflammatory and cholinergic pathways in both nerve agents and sulfur mustard (HD) injury. Increase in AChE synthesis and neurite extension was noted after exposure to HD [K.W. Lanks et al., Exp. Cell Res. 355 (1975)]. Moreover, anti-inflammatory drugs reduce the dermal, respiratory and ocular damage caused by exposure to HD. On the other hand, recent studies have noted the involvement of neuro-inflammatory processes during exposure to the nerve agents sarin or soman [Cowan et al., 2003]. The use of various anti-inflammatory drugs in addition to the classical antidotal drugs (e.g. atropine and oximes) caused decrease in certain toxic symptoms and inflammation-induced brain damage. Our new bifunctional drugs (Scheme 1) are based on CNS-permeable molecular combination of pseudo-reversible AChE inhibitor (pyridostigmine, PYR) coupled via a hydrophobic spacer (octyl or decyl hydrocarbon chain) to a non-steroidal anti-inflammatory drug (NSAID) such as Ibuprofen or Diclofenac (Scheme 1). This study evaluates the efficacy of certain bifunctional compounds against HD and soman poisoning in mice in vivo.
更多
查看译文
关键词
acetylcholinesterase,biogenesis,cancer,lung
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要