Potential Of Three Local Marine Microalgae From Tunisian Coasts For Cadmium, Lead And Chromium Removals

SCIENCE OF THE TOTAL ENVIRONMENT(2021)

引用 19|浏览4
暂无评分
摘要
Metal elements are widely used in various industrial activities and are considered as common water source contaminants. Thus, the development of cost-effective, simple design and efficient processes for trace metal elements removal from contaminated water sources is of great interest. The effects of cadmium, lead and chromium on growth, biomolecules accumulation and metabolic responses of Amphora coffaeiformis, Navicula salinicola and Dunaliella salina isolated from Tunisian coasts were tested. The bioremediation capacities of the three microalgae strains and the mechanisms involved in ions metal removal were also investigated. N. salinicola and D. salina seem to be better tolerating to Cr, while A. coffaeiformis and N. salinicola showed high resistance to Pb. The expression profile analyses by qRT-PCR of the antioxidant defense-related genes revealed that Cd, Pb and Cr treatments induce the up-regulation of catalase and superoxide dismutase coding genes for A. coffaeiformis and D. salina. Regarding N. salinicola, the catalase coding gene seems to be overexpressed after Cd, Pb and Cr exposure while only Cd and Cr induce superoxide dismutase gene overexpression. Moreover, the phytochelatin synthase (a metal chelator synthesis-related gene) was up-regulated in N. salinicola, A. coffaeiformis and D. salina after Cr exposure and also in A. coffaeiformis and D. salina after Cd exposure. While Pb treatments induce overexpression of phytochelatin synthase coding gene only for D. salina. Studied strains showed promising metal removal efficiencies for both Pb and Cr ions metals reached 95% for D. salina. Ion metal removal mechanisms study revealed that intracellular bioaccumulation process is used by D. salina for Cr up-taking. However, both intracellular and extracellular removal mechanisms are involved for Pb and Cr removal using A. coffaeiformis, N. salinicola and for Pb removal using D. salina. FTIR analysis demonstrated that several functional groups as carboxyl, hydroxyl, amino, phosphate and sulfate may participate in the bioadsorption process. (c) 2021 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Amphora coffaeiformis, Navicula salinicola, Dunaliella salina, Metal removal, Intracellular bioaccumulation, Cell surface adsorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要