Optimized Self-Tuning For Circuit Aging

Proceedings of the Conference on Design, Automation and Test in Europe(2010)

引用 30|浏览0
暂无评分
摘要
We present a framework and control policies for optimizing dynamic control of various self-tuning parameters over lifetime in the presence of circuit aging. Our framework introduces dynamic cooling as one of the self-tuning parameters, in addition to supply voltage and clock frequency. Our optimized self-tuning satisfies performance constraints at all times and maximizes a lifetime computational power efficiency (LCPE) metric, which is defined as the total number of clock cycles achieved over lifetime divided by the total energy consumed over lifetime. Our framework features three control policies: 1. Progressive-worst-case-aging (PWCA), which assumes worst-case aging at all times; 2. Progressive-on-state-aging (POSA), which estimates aging by tracking active/sleep mode, and then assumes worst-case aging in active mode and long recovery effects in sleep mode; 3. Progressive-real-time-aging-assisted (PRTA), which estimates the actual amount of aging and initiates optimized control action. Simulation results on benchmark circuits, using aging models validated by 45nm CMOS stress measurements, demonstrate the practicality and effectiveness of our approach. We also analyze design constraints and derive system design guidelines to maximize self-tuning benefits.
更多
查看译文
关键词
CMOS integrated circuits,ageing,circuit tuning,cooling,integrated circuit design,integrated circuit reliability,CMOS stress measurements,active mode,aging models,benchmark circuits,circuit aging,clock cycles,clock frequency,control policies,dynamic control,dynamic cooling,lifetime computational power efficiency metric,optimized self-tuning,progressive-on-state-aging,progressive-real-time-aging-assisted,progressive-worst-case-aging,self-tuning parameters,size 45 nm,sleep mode,supply voltage,system design guidelines,
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要