Fine-Grained Parallelization Of The Car-Parrinello Ab Initio Molecular Dynamics Method On The Ibm Blue Gene/L Supercomputer

IBM Journal of Research and Development(2008)

引用 32|浏览0
暂无评分
摘要
Important scientific problems can be treated via ab initio-based molecular modeling approaches, wherein atomic forces are derived from an energy function that explicitly considers the electrons. The Car-Parrinello ab initio molecular dynamics (CPAIMD) method is widely used to study small systems containing on the order of 10 to 103 atoms. However, the impact of CPAIMD has been limited until recently because of difficulties inherent to scaling the technique beyond processor numbers about equal to the number of electronic states. CPAIMD computations involve a large number of interdependent phases with high interprocessor communication overhead. These phases require the evaluation of various transforms and non-square matrix multiplications that require large interprocessor data movement when efficiently parallelized. Using the Charm++ parallel programming language and runtime system, the phases are discretized into a large number of virtual processors, which are, in turn, mapped flexibly onto physical processors, thereby allowing interleaving of work. Algorithmic and IBM Blue Gene/L (TM) system-specfic optimizations are employed to scale the CPAIMD method to at least 30 times the number of electronic states in small systems consisting of 24 to 768 atoms (32 to 1,024 electronic states) in order to demonstrate fine-grained parallelism. The largest systems studied scaled well across the entire machine (20,480 nodes).
更多
查看译文
关键词
electronic state,large number,small system,CPAIMD computation,CPAIMD method,processor number,large interprocessor data movement,ab initio-based molecular modeling,high interprocessor communication overhead,molecular dynamic,IBM Blue Gene,L supercomputer,fine-grained parallelization,molecular dynamics method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要