Instrument Performance Analysis for Methane Point Source Retrieval and Estimation Using Remote Sensing Technique
Remote Sensing(2025)
Abstract
The effective monitoring of methane (CH4) point sources is important for climate change research. Satellite-based observations have demonstrated significant potential for emission estimation. In this study, the methane plumes with different emission rates are modelled and pseudo-observations with diverse spatial resolution, spectral resolution, and signal-to-noise ratios (SNR) are simulated by the radiative transfer model. The iterative maximum a posteriori–differential optical absorption spectroscopy (IMAP-DOAS) algorithm is applied to retrieve the column-averaged methane dry air mole fraction (XCH4), a three-dimensional matrix of estimated plume emission rates is then constructed. The results indicate that an optimal plume estimation requires high spatial and spectral resolution alongside an adequate SNR. While a spatial resolution degradation within 120 m has little impact on quantification, a high spatial resolution is important for detecting low-emission plumes. Additionally, a fine spectral resolution (<5 nm) is more beneficial than a higher SNR for precise plume retrieval. Scientific SNR settings can also help to accurately quantify methane plumes, but there is no need to pursue an overly extreme SNR. Finally, miniaturized spectroscopic systems, such as dispersive spectrometers or Fabry–Pérot interferometers, meet current detection needs, offering a faster and resource-efficient deployment pathway. The results can provide a reference for the development of current detection instruments for methane plumes.
MoreTranslated text
Key words
instrument parameters,IMAP-DOAS retrieval,methane plume,emission rate estimation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined