WeChat Mini Program
Old Version Features

A Contour Error Prediction Method for Tool Path Correction Using a Multi-Feature Hybrid Model in Robotic Milling Systems

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING(2025)

Cited 0|Views13
Abstract
Achieving high precision in robotic milling presents significant challenges due to inherent errors caused by various factors such as robot stiffness deformation and uneven machining allowances in large workpieces. Traditional error corrected methods often fall short in effectively addressing the complexity and dynamic nature of such errors. To address these challenges, a contour error prediction model has been proposed by using a combination of Gaussian Processes and a CNN-BiLSTM architecture. Firstly, extract the potential error features, including the robot's posture and stiffness information, as well as the workpiece's machining allowance during the milling process. Then, process these features to create a uniformly structured training set. Subsequently, develop a CNN-BiLSTM neural network model to realize an accurate contour error prediction, where the CNN layers are responsible for extracting hidden local features from the structured data, while the BiLSTM layers capture temporal correlations and hidden features related to tool path. Finally, validate on a saddle-shaped workpiece with surface features similar to those found in aero-engine casing cavities. The results demonstrate that the fusion-based error prediction model effectively reduces the maximum contour error from 0.9629 mm to 0.4881 mm, and decreases the mean absolute contour error from 0.7171 mm to 0.3048mm, representing reductions of 49.30 % and 57.40 %, respectively. These reductions well validate the effectiveness of the proposed method.
More
Translated text
Key words
Robot milling,Tool path correction,Contour error,Multi-feature,Hybrid model
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined