谷歌浏览器插件
订阅小程序
在清言上使用

Physics-informed Machine Learning for Predicting Fatigue Damage of Wire Bonds in Power Electronic Modules

2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)(2024)

引用 0|浏览9
关键词
Machine Learning,Power Electronics,Fatigue Damage,Bond Wires,Power Electronic Modules,Cycling,Neural Network,Finite Element,Loading Conditions,Finite Element Model,Cyclic Loading,Temperature Cycles,Damage Parameters,Prediction Model,Accuracy Of Model,Training Dataset,Artificial Neural Network,Validation Dataset,Response Data,Response Surface,Lifetime Model,Interfacial Layer,Aluminum Nitride,Response Surface Methodology,Thermal Load,Damage Distribution,Bill Of Materials,Element Mesh,3D Slicer,Shift Parameter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要