Robust Gaussian Process Regression with Input Uncertainty: A PAC-Bayes Perspective
IEEE TRANSACTIONS ON CYBERNETICS(2024)
Univ Technol Sydney
Abstract
The Gaussian process (GP) algorithm is considered as a powerful nonparametric-learning approach, which can provide uncertainty measurements on the predictions. The standard GP requires clearly observed data, unexpected perturbations in the input may lead to learned regression model mismatching. Besides, GP also suffers from the lack of good generalization performance guarantees. To deal with data uncertainty and provide a numerical generalization performance guarantee on the unknown data distribution, this article proposes a novel robust noisy input GP (NIGP) algorithm based on the probably approximately correct (PAC) Bayes theory. Furthermore, to reduce the computational complexity, we develop a sparse NIGP algorithm, and then develop a sparse PAC-Bayes NIGP approach. Compared with NIGP algorithms, instead of maximizing the marginal log likelihood, one can optimize the PAC-Bayes bound to pursue a tighter generalization error upper bound. Experiments verify that the NIGP algorithms can attain greater accuracy. Besides, the PAC-NIGP algorithms proposed herein can achieve both robust performance and improved generalization error upper bound in the face of both uncertain input and output data.
MoreTranslated text
Key words
Training data,Noise measurement,Approximation algorithms,Gaussian processes,Uncertainty,Training,Standards,Bayesian learning,Gaussian process (GP),probably approximately correct (PAC)-Bayes bound,sparse approximation,statistical learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined