Generalization in Sensorimotor Networks Configured with Natural Language Instructions
openalex(2022)
Department of Basic Neuroscience
Abstract
A bstract One of humans’ most fundamental cognitive feats is the ability to interpret linguistic instructions in order to perform novel tasks without any explicit experience with the task. Yet, the computations that the brain might use to accomplish such a feat remains poorly understood. Here we use the latest advances in Natural Language Processing to create a neural model of generalization based on linguistic instructions. Models are trained on a set of commonly studied psychophysical tasks, and receive instructions embedded by a pre-trained language model. Our best models can perform a previously unseen task with a performance of 83% correct on average based solely on linguistic instructions (i.e. 0-shot learning). We found that language scaffolds sensorimotor representations such that activity for interrelated tasks share a common geometry with the semantic representations of instructions, allowing language to cue the proper composition of practiced skills in unseen settings. Finally, we show how this model can generate a linguistic description of a novel task it has identified using only motor feedback, which can subsequently guide a partner model to perform the task. Our models offer several experimentally testable predictions outlining how linguistic information must be represented in order to facilitate flexible and general cognition in the human brain.
MoreTranslated text
Key words
Language Processing,Language Comprehension,Speech Comprehension,Semantic Memory,Neural Mechanisms
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined