基本信息
浏览量:0

个人简介
The goal of our research is to uncover general principles of representation and computation in neural circuits. Most computations of interest, such as recognizing an object or making a decision, are performed in the presence of high uncertainty. Recent behavioral work in humans and animals has shown that the nervous system handles this uncertainty near optimally, which is to say that the brain represents probability distributions over variables of interest and combine these distributions according to the laws of statistical inference. Our current work focuses on understanding how these inferences are performed at the neuronal level using a type of neural code known as population code. We apply our theory to a variety of domains, including decision making, multisensory integration, number representation, early visual processing and perceptual learning.
研究兴趣
论文共 137 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Nature communicationsno. 1 (2023): 1-7
Philip H. Wong, Andreas Braun, Daniel Malagarriga,Jeff Moehlis,Rubén Moreno-Bote,Alexandre Pouget,Matthieu Louis
biorxiv(2023)
引用0浏览0引用
0
0
Science Advancesno. 22 (2022)
Reidar Riveland,Alexandre Pouget
biorxiv(2022)
user-5e9d449e4c775e765d44d7c9(2020)
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn