基本信息
views: 26

Bio
We use advanced optical spectroscopy techniques to track, understand and manipulate the functional properties of complex organic materials. Projects range from fundamental investigation of light-matter interactions to optimising material processing for high-efficiency light-emitting devices. Using a suite of ultrafast laser spectroscopies, we pursue research in four broad streams:
1) Molecular movies. Using cutting-edge vibrational spectroscopy techniques, we explore the behaviour of non-Born-Oppenheimer dynamics, where ultrafast electronic processes are intimately linked to and driven by nuclear vibrations.
2) Triplet dynamics. We use the full electronic spectroscopy toolbox to unravel the often-murky mechanisms through which ‘dark’ triplet states are formed and decay in organic materials. These include processes such as singlet fission and thermally activated delayed fluorescence, both with enormous technological potential. Together with synthetic chemists, we seek to extract structure-property relationships that will lead to better molecules and more efficient devices.
3) Light-enhanced materials. We use organic materials to form ‘polaritons’ – hybrid states formed by the strong interaction of light and an absorbing material. These states can radically restructure the potential energy landscape, with suggested applications from catalysis to solar cells. We’re developing approaches to understand how these states alter electronic dynamics and thus functional properties.
4) Room-temperature quantum information. Polaritons can form macroscopic Bose-Einstein condensates, with applications from low-threshold lasers to quantum computing. Using organic materials, such condensates can even be attained at room temperature. We seek to understand the materials properties that enable polariton condensation, building towards room-temperature and electrically injected quantum devices.
1) Molecular movies. Using cutting-edge vibrational spectroscopy techniques, we explore the behaviour of non-Born-Oppenheimer dynamics, where ultrafast electronic processes are intimately linked to and driven by nuclear vibrations.
2) Triplet dynamics. We use the full electronic spectroscopy toolbox to unravel the often-murky mechanisms through which ‘dark’ triplet states are formed and decay in organic materials. These include processes such as singlet fission and thermally activated delayed fluorescence, both with enormous technological potential. Together with synthetic chemists, we seek to extract structure-property relationships that will lead to better molecules and more efficient devices.
3) Light-enhanced materials. We use organic materials to form ‘polaritons’ – hybrid states formed by the strong interaction of light and an absorbing material. These states can radically restructure the potential energy landscape, with suggested applications from catalysis to solar cells. We’re developing approaches to understand how these states alter electronic dynamics and thus functional properties.
4) Room-temperature quantum information. Polaritons can form macroscopic Bose-Einstein condensates, with applications from low-threshold lasers to quantum computing. Using organic materials, such condensates can even be attained at room temperature. We seek to understand the materials properties that enable polariton condensation, building towards room-temperature and electrically injected quantum devices.
Research Interests
Papers共 95 篇Author StatisticsCo-AuthorSimilar Experts
By YearBy Citation主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
arxiv(2025)
Piyush Singh,Pradip Pattanayak, Shubhangi Majumdar,Soham Mukherjee, Shrestha Banerjee,Pradipta Purkayastha,Pramit Kumar Chowdhury,Andrew J Musser,Sujit Kumar Ghosh
Chemistry (Weinheim an der Bergstrasse, Germany)no. 17 (2025): e202404317-e202404317
ADVANCED OPTICAL MATERIALS (2025)
MRS Communications (2024)
Research square (2024)
ANGEWANDTE CHEMIE-INTERNATIONAL EDITIONno. 52 (2024)
crossref(2024)
CHEMISTRY OF MATERIALSno. 9 (2024): 4607-4615
Load More
Author Statistics
#Papers: 95
#Citation: 4456
H-Index: 32
G-Index: 66
Sociability: 6
Diversity: 2
Activity: 46
Co-Author
Co-Institution
D-Core
- 合作者
- 学生
- 导师
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn