Robustness and Resilience of Computational Deconvolution Methods for Bulk RNA Sequencing Data.
Briefings in bioinformatics(2025)
Abstract
This study benchmarks the robustness and resilience of computational deconvolution methods for estimating cell-type proportions in bulk tissues, with a focus on comparing reference-based and reference-free methods. Robustness is evaluated by generating in silico pseudo-bulk tissue RNA sequencing data from cell-level gene expression profiles derived from four different tissue types, with simulated cellular composition at varying levels of heterogeneity. To assess resilience, we intentionally alter single-cell RNA profiles to create pseudo-bulk tissue RNA-seq data. Deconvolution estimates are compared with ground truth using Pearson's correlation coefficient, root mean squared deviation, and mean absolute deviation. The results show that reference-based methods are more robust when reliable reference data are available, whereas reference-free methods excel in scenarios lacking suitable reference data. Furthermore, variations in cell-level transcriptomic profiles and cell composition have emerged as critical factors influencing the performance of deconvolution methods. This study provides significant insights into the factors affecting bulk tissue deconvolution performance, which are essential for guiding users and advancing the development of more powerful and reliable algorithms in the future.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined