Boosting Adversarial Transferability Via Commonality-Oriented Gradient Optimization
arXiv · Computer Vision and Pattern Recognition(2025)
Abstract
Exploring effective and transferable adversarial examples is vital for understanding the characteristics and mechanisms of Vision Transformers (ViTs). However, adversarial examples generated from surrogate models often exhibit weak transferability in black-box settings due to overfitting. Existing methods improve transferability by diversifying perturbation inputs or applying uniform gradient regularization within surrogate models, yet they have not fully leveraged the shared and unique features of surrogate models trained on the same task, leading to suboptimal transfer performance. Therefore, enhancing perturbations of common information shared by surrogate models and suppressing those tied to individual characteristics offers an effective way to improve transferability. Accordingly, we propose a commonality-oriented gradient optimization strategy (COGO) consisting of two components: Commonality Enhancement (CE) and Individuality Suppression (IS). CE perturbs the mid-to-low frequency regions, leveraging the fact that ViTs trained on the same dataset tend to rely more on mid-to-low frequency information for classification. IS employs adaptive thresholds to evaluate the correlation between backpropagated gradients and model individuality, assigning weights to gradients accordingly. Extensive experiments demonstrate that COGO significantly improves the transfer success rates of adversarial attacks, outperforming current state-of-the-art methods.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined