Bayesian Network in Structural Health Monitoring: Theoretical Background and Applications Review
Sensors (Basel, Switzerland)(2025)
Abstract
With accelerated urbanization and aging infrastructure, the safety and durability of civil engineering structures face significant challenges, making structural health monitoring (SHM) a critical approach to ensuring engineering safety. The Bayesian network, as a probabilistic reasoning tool, offers a novel technological pathway for SHM due to its strengths in handling uncertainties and multi-source data fusion. This study systematically reviews the core applications of the Bayesian network in SHM, including damage prediction, data fusion, uncertainty modeling, and decision support. By integrating multi-source sensor data with probabilistic inference, the Bayesian network enhances the accuracy and reliability of monitoring systems, providing a theoretical foundation for damage identification, risk early warning, and optimization of maintenance strategies. The study presents a comprehensive review that systematically unifies the theoretical framework of BN with SHM applications, addressing the gap between probabilistic reasoning and real-world infrastructure management. The research outcomes hold significant theoretical and engineering implications for advancing SHM technology development, reducing operational and maintenance costs, and ensuring the safety of public infrastructure.
MoreTranslated text
Key words
Bayesian network,structural health monitoring,damage prediction,data fusion,uncertainty
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined