Gazemapper: A Tool for Automated World-Based Analysis of Gaze Data from One or Multiple Wearable Eye Trackers
Behavior Research Methods(2025)
Lund University
Abstract
The problem: wearable eye trackers deliver eye-tracking data on a scene video that is acquired by a camera affixed to the participant’s head. Analyzing and interpreting such head-centered data is difficult and laborious manual work. Automated methods to map eye-tracking data to a world-centered reference frame (e.g., screens and tabletops) are available. These methods usually make use of fiducial markers. However, such mapping methods may be difficult to implement, expensive, and eye tracker-specific. The solution: here we present gazeMapper, an open-source tool for automated mapping and processing of eye-tracking data. gazeMapper can: (1) Transform head-centered data to planes in the world, (2) synchronize recordings from multiple participants, (3) determine data quality measures, e.g., accuracy and precision. gazeMapper comes with a GUI application (Windows, macOS, and Linux) and supports 11 different wearable eye trackers from AdHawk, Meta, Pupil, SeeTrue, SMI, Tobii, and Viewpointsystem. It is also possible to sidestep the GUI and use gazeMapper as a Python library directly.
MoreTranslated text
Key words
Eye tracking,Wearable eye tracking,Mobile eye tracking,Eye movements,Gaze,Data quality,Head-fixed reference frame,World-fixed reference frame,Plane,Surface,Tool
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined