On Mutation-Guided Unit Test Generation
arXiv · Software Engineering(2025)
Abstract
Unit tests play a vital role in uncovering potential faults in software. While tools like EvoSuite focus on maximizing code coverage, recent advances in large language models (LLMs) have shifted attention toward LLM-based test generation. However, code coverage metrics – such as line and branch coverage – remain overly emphasized in reported research, despite being weak indicators of a test suite's fault-detection capability. In contrast, mutation score offers a more reliable and stringent measure, as demonstrated in our findings where some test suites achieve 100% coverage but only 4% mutation score. Although a few studies consider mutation score, the effectiveness of LLMs in killing mutants remains underexplored. In this paper, we propose MUTGEN, a mutation-guided, LLM-based test generation approach that incorporates mutation feedback directly into the prompt. Evaluated on 204 subjects from two benchmarks, MUTGEN significantly outperforms both EvoSuite and vanilla prompt-based strategies in terms of mutation score. Furthermore, MUTGEN introduces an iterative generation mechanism that pushes the limits of LLMs in killing additional mutants. Our study also provide insights into the limitations of LLM-based generation, analyzing the reasons for live and uncovered mutants, and the impact of different mutation operators on generation effectiveness.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined