Computational Thresholds in Multi-Modal Learning Via the Spiked Matrix-Tensor Model
arXiv · Machine Learning(2025)
Abstract
We study the recovery of multiple high-dimensional signals from two noisy, correlated modalities: a spiked matrix and a spiked tensor sharing a common low-rank structure. This setting generalizes classical spiked matrix and tensor models, unveiling intricate interactions between inference channels and surprising algorithmic behaviors. Notably, while the spiked tensor model is typically intractable at low signal-to-noise ratios, its correlation with the matrix enables efficient recovery via Bayesian Approximate Message Passing, inducing staircase-like phase transitions reminiscent of neural network phenomena. In contrast, empirical risk minimization for joint learning fails: the tensor component obstructs effective matrix recovery, and joint optimization significantly degrades performance, highlighting the limitations of naive multi-modal learning. We show that a simple Sequential Curriculum Learning strategy-first recovering the matrix, then leveraging it to guide tensor recovery-resolves this bottleneck and achieves optimal weak recovery thresholds. This strategy, implementable with spectral methods, emphasizes the critical role of structural correlation and learning order in multi-modal high-dimensional inference.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined