Implementation of Explainable Ai in Deep Learning Methods for Multiclass Classification of Plant Diseases in Mango Leaves
ELCVIA Electronic Letters on Computer Vision and Image Analysis(2025)
Vellore Institute of Technology
Abstract
Maintaining optimal yield plays a crucial role in the prosperity of agriculture and in turn the economy of the country. One way to optimize this yield is by early and accurate detection and diagnosis of crop diseases. Traditional methods that involve manual inspection or the like tend to be tedious and often inaccurate. Hence the use of machine learning and convolutional neural networks have proven to be of great advantage in terms of accuracy, reliability, ease of implementation etc. This paper explores various deep learning models such as AlexNet, ResNet, Swin Transformer, Vgg-16, vit model for plant leaf disease detection and classification on a dataset of mango leaves and compares aspects such as accuracy and loss. Further the models have been combined using feature fusion, and their accuracies compared. Finally, a combination of ResNet and AlexNet has been proposed with an impressive accuracy of 99.97%. Further, Grad-CAM (Gradient-weighted Class Activation Mapping) has been implemented to highlight important regions in the leaf images which improves visualization. This can potentially provide an accurate identification and classification of plant diseases based on leaf images.
MoreTranslated text
Key words
plant disease, deep learning, CNN, Explainable AI, Grad-CAM, mango leaves, AlexNet, ResNet, model fusion
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined