WeChat Mini Program
Old Version Features

Hybrid Bernstein Normalizing Flows for Flexible Multivariate Density Regression with Interpretable Marginals

arXiv · Machine Learning(2025)

Cited 0|Views2
Abstract
Density regression models allow a comprehensive understanding of data by modeling the complete conditional probability distribution. While flexible estimation approaches such as normalizing flows (NF) work particularly well in multiple dimensions, interpreting the input-output relationship of such models is often difficult, due to the black-box character of deep learning models. In contrast, existing statistical methods for multivariate outcomes such as multivariate conditional transformation models (MCTM) are restricted in flexibility and are often not expressive enough to represent complex multivariate probability distributions. In this paper, we combine MCTM with state-of-the-art and autoregressive NF to leverage the transparency of MCTM for modeling interpretable feature effects on the marginal distributions in the first step and the flexibility of neural-network-based NF techniques to account for complex and non-linear relationships in the joint data distribution. We demonstrate our method's versatility in various numerical experiments and compare it with MCTM and other NF models on both simulated and real-world data.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined