WeChat Mini Program
Old Version Features

Development of an Automated Artificial Intelligence-Based Tool for Reticulin Fibrosis Assessment in Bone Marrow Biopsies.

Giuseppe D'Abbronzo, Antonio D'Antonio,Annarosaria De Chiara,Luigi Panico,Lucianna Sparano, Anna Diluvio, Antonello Sica, Gino Svanera, Giovanni De Chiara, Mariano Fuggi, Ferdinando Russo,Renato Franco,Andrea Ronchi

Virchows Archiv an international journal of pathology(2025)

Cited 0|Views2
Abstract
Bone marrow fibrosis plays a critical role in the diagnosis, prognosis, and management of haematological disorders, particularly myeloproliferative neoplasms like primary myelofibrosis. Accurate assessment of fibrosis, typically graded through histochemical techniques such as reticulin and trichrome staining, is essential but remains highly dependent on the pathologist's experience. To address the challenges of variability in interpretation and the increasing demand for standardized evaluations, we developed a digital pathology system for automated bone marrow reticulin fibrosis grading. This study utilized 86 bone marrow biopsy specimens from patients diagnosed with Philadelphia chromosome-negative myeloproliferative neoplasms, collected between 2018 and 2023. A fully convolutional network based on the InceptionV3 architecture was trained to assess fibrosis grades (MF0-MF3) from whole slide images of reticulin-stained sections. The model was trained using 3814 annotated images and validated using a separate set of 40 BMBs. The algorithm's performance was evaluated by comparing its fibrosis grading to expert hematopathologists' assessments, yielding a Cohen's kappa coefficient of 0.831, indicating excellent agreement. The algorithm showed strong concordance in fibrosis grading, especially for MF0 (k = 0.918) and MF3 (k = 0.886), and substantial agreement for intermediate grades (MF1 and MF2). Further validation across multiple institutions and scanning platforms confirmed the algorithm's robustness, with an overall agreement of 0.816. These results demonstrate the potential of digital pathology tools to provide standardized, reproducible fibrosis grading, thereby aiding pathologists in clinical decision-making and training.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined