WeChat Mini Program
Old Version Features

Artificial Intelligence Automated Solution for Hazard Annotation and Eye Tracking in a Simulated Environment.

Accident Analysis & Prevention(2025)

Cited 0|Views0
Abstract
High-fidelity simulators and sensors are commonly used in research to create immersive environments for studying real-world problems. This setup records detailed data, generating large datasets. In driving research, a full-scale car model repurposed as a driving simulator allows human subjects to navigate realistic driving scenarios. Data from these experiments are collected in raw form, requiring extensive manual annotation of roadway elements such as hazards and distractions. This process is often time-consuming, labor-intensive, and repetitive, causing delays in research progress. This paper proposes an AI-driven solution to automate these tasks, enabling researchers to focus on analysis and advance their studies efficiently. The solution builds on previous driving behavior research using a high-fidelity full-cab simulator equipped with gaze-tracking cameras. It extends the capabilities of the earlier system described in Pawar's (2021) "Hazard Detection in Driving Simulation using Deep Learning", which performed only hazard detection. The enhanced system now integrates both hazard annotation and gaze-tracking data. By combining vehicle handling parameters with drivers' visual attention data, the proposed method provides a unified, detailed view of participants' driving behavior across various simulated scenarios. This approach streamlines data analysis, accelerates research timelines, and enhances understanding of driving behavior.
More
Translated text
Key words
Deep Learning,Driving Hazard detection,Translational Research,Driving Simulation,Gaze Tracking,Object Detection
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined