WeChat Mini Program
Old Version Features

Scsdne: A Semi-Supervised Method for Inferring Cell-Cell Interactions Based on Graph Embedding.

PLoS computational biology(2025)

College of Mathematics and System Sciences

Cited 0|Views2
Abstract
As a fundamental characteristic of multicellular organisms, cell-cell communication is achieved through ligand-receptor (L-R) interactions, enabling the exchange of information and revealing the diversity of biological processes and cellular functions. To gain a comprehensive understanding of these complex interaction mechanisms, we constructed a manually curated L-R interaction database and developed a semi-supervised graph embedding model called scSDNE for inferring cell-cell interactions mediated by L-R interactions. scSDNE model utilizes the power of deep learning to map genes from interacting cells into a shared latent space, allowing for a nuanced representation of their relationships. Leveraging the prior information provided by database, scSDNE can infer significant L-R pairs involved in intercellular communication. Experiments on real single-cell RNA sequencing (scRNA-seq) datasets demonstrate that our method detects interactions with a high degree of reliability compared with other methods. More importantly, the model integrates gene regulation information within cells to enhance the accuracy and biological interpretability of the inferences. Our method provides a more comprehensive view of cell-cell interactions, offering new insights into complex intercellular communication.
More
Translated text
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined