Statistical Structural Damage Detection of Functionally Graded Euler–Bernoulli Beams Based on Element Modal Strain Energy Sensitivity
Buildings(2025)
College of Building Engineering
Abstract
In practical engineering, uncertainties inevitably exist in the models and measurement data used for structures. Therefore, a statistical strategy related to damage detection methods become crucial. In this paper, a probabilistic statistical damage detection method for FG Euler–Bernoulli beam structures is proposed, extending the approach originally developed for isotropic materials. Our approach determines the probability of damage occurrence for each element, which aids in evaluating whether beam structures have been damaged. This evaluation is based on integrating the sensitivity of modal strain energy for each element with the perturbation method. To demonstrate the effectiveness and accuracy of the proposed method, several numerical examples are investigated. These examples include a simply supported FG Euler–Bernoulli beam subjected to both single and multiple element damages. The influence of gradient index, damage severity, boundary condition, and noise level on the accuracy of detection are also considered. The studies demonstrate that the probability of damage for each element remains relatively stable despite variations in the gradient indices. For the damaged elements, these probabilities approach 1, indicating that the proposed method effectively identifies damage in FG beams even when the gradient index varies. Additionally, as the level of damage increases, the accuracy of damage detection tends to improve. However, varying boundary conditions can substantially affect the outcomes of damage identification, potentially leading to inconsistencies in results. Furthermore, our proposed method demonstrates excellent resistance against noise levels of up to 5%. We also found that different boundary conditions have a great impact on the damage detection.
MoreTranslated text
Key words
functionally graded Euler–Bernoulli beam,structural damage detection,modal strain energy sensitivity,statistical methods for damage identification
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined