Deep Learning-Driven Active Sheet Positioning Using Linear Actuators in Laser Beam Butt Welding of Thin Steel Sheets
Journal of Advanced Joining Processes(2025)
Abstract
Welding thin steel sheets in industrial applications is difficult because joint gaps occur during the process, which can lead to weld interruptions. Such welds are considered a reject and in order to avoid the weld to interrupt it is crucial to hinder the formation of joint gaps. Especially laser beam welding is affected by the emergence of gaps. Due to the narrow laser spot, product quality is highly dependent on the alignment and positioning of the sheets. This is typically done by clamping devices, which hold the workpieces in place. However, these clamps are suited for a specific workpiece geometry and require manual redesign every time the process changes. Adaptive clamping devices instead are designed to realize a time-dependent workpiece adjustment. Modeling the joint gap behavior to realize a controller for adaptive clamps can be difficult as the influence of heating, melting, and cooling on the joint gap formation is unknown and varies due to temperature dependent physical properties. Instead, the control parameters and actions can be derived using data-driven methods. In this paper, we present a novel data-driven approach how deep learning can be utilized to manipulate the sheet position during the weld with two actuators that apply force. A temporal convolution neural network (TCN) analyzes the change of the joint gap and predicts the required force to adapt the workpiece position. The developed method has been integrated into the welding process and improves the length of the average weld seam by 39.5% compared to welds without an active adjustment and 1.4% to welds that have been adapted with a constant force.
MoreTranslated text
Key words
Laser beam welding,Temporal convolutional neural network,Thin steel sheets,Inductive probes,Gap adjustment,Deep learning
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined